Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
app(nil, Y) → Y
app(cons(N, L), Y) → cons(N, app(L, Y))
low(N, nil) → nil
low(N, cons(M, L)) → iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) → cons(M, low(N, L))
iflow(false, N, cons(M, L)) → low(N, L)
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
quicksort(nil) → nil
quicksort(cons(N, L)) → app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
app(nil, Y) → Y
app(cons(N, L), Y) → cons(N, app(L, Y))
low(N, nil) → nil
low(N, cons(M, L)) → iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) → cons(M, low(N, L))
iflow(false, N, cons(M, L)) → low(N, L)
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
quicksort(nil) → nil
quicksort(cons(N, L)) → app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

LOW(N, cons(M, L)) → IFLOW(le(M, N), N, cons(M, L))
QUICKSORT(cons(N, L)) → APP(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))
QUICKSORT(cons(N, L)) → QUICKSORT(low(N, L))
APP(cons(N, L), Y) → APP(L, Y)
LE(s(X), s(Y)) → LE(X, Y)
HIGH(N, cons(M, L)) → IFHIGH(le(M, N), N, cons(M, L))
HIGH(N, cons(M, L)) → LE(M, N)
IFLOW(true, N, cons(M, L)) → LOW(N, L)
QUICKSORT(cons(N, L)) → HIGH(N, L)
QUICKSORT(cons(N, L)) → QUICKSORT(high(N, L))
LOW(N, cons(M, L)) → LE(M, N)
IFHIGH(false, N, cons(M, L)) → HIGH(N, L)
IFLOW(false, N, cons(M, L)) → LOW(N, L)
IFHIGH(true, N, cons(M, L)) → HIGH(N, L)
QUICKSORT(cons(N, L)) → LOW(N, L)

The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
app(nil, Y) → Y
app(cons(N, L), Y) → cons(N, app(L, Y))
low(N, nil) → nil
low(N, cons(M, L)) → iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) → cons(M, low(N, L))
iflow(false, N, cons(M, L)) → low(N, L)
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
quicksort(nil) → nil
quicksort(cons(N, L)) → app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

LOW(N, cons(M, L)) → IFLOW(le(M, N), N, cons(M, L))
QUICKSORT(cons(N, L)) → APP(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))
QUICKSORT(cons(N, L)) → QUICKSORT(low(N, L))
APP(cons(N, L), Y) → APP(L, Y)
LE(s(X), s(Y)) → LE(X, Y)
HIGH(N, cons(M, L)) → IFHIGH(le(M, N), N, cons(M, L))
HIGH(N, cons(M, L)) → LE(M, N)
IFLOW(true, N, cons(M, L)) → LOW(N, L)
QUICKSORT(cons(N, L)) → HIGH(N, L)
QUICKSORT(cons(N, L)) → QUICKSORT(high(N, L))
LOW(N, cons(M, L)) → LE(M, N)
IFHIGH(false, N, cons(M, L)) → HIGH(N, L)
IFLOW(false, N, cons(M, L)) → LOW(N, L)
IFHIGH(true, N, cons(M, L)) → HIGH(N, L)
QUICKSORT(cons(N, L)) → LOW(N, L)

The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
app(nil, Y) → Y
app(cons(N, L), Y) → cons(N, app(L, Y))
low(N, nil) → nil
low(N, cons(M, L)) → iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) → cons(M, low(N, L))
iflow(false, N, cons(M, L)) → low(N, L)
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
quicksort(nil) → nil
quicksort(cons(N, L)) → app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 5 SCCs with 5 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(cons(N, L), Y) → APP(L, Y)

The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
app(nil, Y) → Y
app(cons(N, L), Y) → cons(N, app(L, Y))
low(N, nil) → nil
low(N, cons(M, L)) → iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) → cons(M, low(N, L))
iflow(false, N, cons(M, L)) → low(N, L)
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
quicksort(nil) → nil
quicksort(cons(N, L)) → app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


APP(cons(N, L), Y) → APP(L, Y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(APP(x1, x2)) = (4)x_1   
POL(cons(x1, x2)) = 1 + (4)x_2   
The value of delta used in the strict ordering is 4.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
app(nil, Y) → Y
app(cons(N, L), Y) → cons(N, app(L, Y))
low(N, nil) → nil
low(N, cons(M, L)) → iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) → cons(M, low(N, L))
iflow(false, N, cons(M, L)) → low(N, L)
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
quicksort(nil) → nil
quicksort(cons(N, L)) → app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LE(s(X), s(Y)) → LE(X, Y)

The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
app(nil, Y) → Y
app(cons(N, L), Y) → cons(N, app(L, Y))
low(N, nil) → nil
low(N, cons(M, L)) → iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) → cons(M, low(N, L))
iflow(false, N, cons(M, L)) → low(N, L)
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
quicksort(nil) → nil
quicksort(cons(N, L)) → app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


LE(s(X), s(Y)) → LE(X, Y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(s(x1)) = 1 + (4)x_1   
POL(LE(x1, x2)) = (3)x_2   
The value of delta used in the strict ordering is 3.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
app(nil, Y) → Y
app(cons(N, L), Y) → cons(N, app(L, Y))
low(N, nil) → nil
low(N, cons(M, L)) → iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) → cons(M, low(N, L))
iflow(false, N, cons(M, L)) → low(N, L)
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
quicksort(nil) → nil
quicksort(cons(N, L)) → app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IFHIGH(false, N, cons(M, L)) → HIGH(N, L)
IFHIGH(true, N, cons(M, L)) → HIGH(N, L)
HIGH(N, cons(M, L)) → IFHIGH(le(M, N), N, cons(M, L))

The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
app(nil, Y) → Y
app(cons(N, L), Y) → cons(N, app(L, Y))
low(N, nil) → nil
low(N, cons(M, L)) → iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) → cons(M, low(N, L))
iflow(false, N, cons(M, L)) → low(N, L)
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
quicksort(nil) → nil
quicksort(cons(N, L)) → app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


IFHIGH(false, N, cons(M, L)) → HIGH(N, L)
IFHIGH(true, N, cons(M, L)) → HIGH(N, L)
HIGH(N, cons(M, L)) → IFHIGH(le(M, N), N, cons(M, L))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(cons(x1, x2)) = 2 + x_1 + (3)x_2   
POL(le(x1, x2)) = 4 + (2)x_1 + (3)x_2   
POL(true) = 3   
POL(false) = 3   
POL(s(x1)) = 3 + x_1   
POL(HIGH(x1, x2)) = 2 + (4)x_1 + (3)x_2   
POL(0) = 1   
POL(IFHIGH(x1, x2, x3)) = 1 + (4)x_2 + (2)x_3   
The value of delta used in the strict ordering is 3.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
app(nil, Y) → Y
app(cons(N, L), Y) → cons(N, app(L, Y))
low(N, nil) → nil
low(N, cons(M, L)) → iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) → cons(M, low(N, L))
iflow(false, N, cons(M, L)) → low(N, L)
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
quicksort(nil) → nil
quicksort(cons(N, L)) → app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IFLOW(true, N, cons(M, L)) → LOW(N, L)
LOW(N, cons(M, L)) → IFLOW(le(M, N), N, cons(M, L))
IFLOW(false, N, cons(M, L)) → LOW(N, L)

The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
app(nil, Y) → Y
app(cons(N, L), Y) → cons(N, app(L, Y))
low(N, nil) → nil
low(N, cons(M, L)) → iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) → cons(M, low(N, L))
iflow(false, N, cons(M, L)) → low(N, L)
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
quicksort(nil) → nil
quicksort(cons(N, L)) → app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


IFLOW(true, N, cons(M, L)) → LOW(N, L)
LOW(N, cons(M, L)) → IFLOW(le(M, N), N, cons(M, L))
IFLOW(false, N, cons(M, L)) → LOW(N, L)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(cons(x1, x2)) = 3 + x_1 + (3)x_2   
POL(le(x1, x2)) = 0   
POL(true) = 0   
POL(IFLOW(x1, x2, x3)) = (2)x_1 + (2)x_3   
POL(false) = 0   
POL(s(x1)) = 2 + (3)x_1   
POL(LOW(x1, x2)) = 3 + (3)x_2   
POL(0) = 2   
The value of delta used in the strict ordering is 3.
The following usable rules [17] were oriented:

le(s(X), 0) → false
le(0, Y) → true
le(s(X), s(Y)) → le(X, Y)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
app(nil, Y) → Y
app(cons(N, L), Y) → cons(N, app(L, Y))
low(N, nil) → nil
low(N, cons(M, L)) → iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) → cons(M, low(N, L))
iflow(false, N, cons(M, L)) → low(N, L)
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
quicksort(nil) → nil
quicksort(cons(N, L)) → app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

QUICKSORT(cons(N, L)) → QUICKSORT(high(N, L))
QUICKSORT(cons(N, L)) → QUICKSORT(low(N, L))

The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
app(nil, Y) → Y
app(cons(N, L), Y) → cons(N, app(L, Y))
low(N, nil) → nil
low(N, cons(M, L)) → iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) → cons(M, low(N, L))
iflow(false, N, cons(M, L)) → low(N, L)
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
quicksort(nil) → nil
quicksort(cons(N, L)) → app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


QUICKSORT(cons(N, L)) → QUICKSORT(low(N, L))
The remaining pairs can at least be oriented weakly.

QUICKSORT(cons(N, L)) → QUICKSORT(high(N, L))
Used ordering: Polynomial interpretation [25,35]:

POL(cons(x1, x2)) = 1 + x_2   
POL(high(x1, x2)) = 1 + x_2   
POL(ifhigh(x1, x2, x3)) = 1 + x_3   
POL(low(x1, x2)) = x_2   
POL(le(x1, x2)) = (2)x_2   
POL(true) = 0   
POL(iflow(x1, x2, x3)) = x_3   
POL(false) = 4   
POL(s(x1)) = 2   
POL(QUICKSORT(x1)) = x_1   
POL(0) = 0   
POL(nil) = 1   
The value of delta used in the strict ordering is 1.
The following usable rules [17] were oriented:

low(N, nil) → nil
iflow(true, N, cons(M, L)) → cons(M, low(N, L))
low(N, cons(M, L)) → iflow(le(M, N), N, cons(M, L))
iflow(false, N, cons(M, L)) → low(N, L)
high(N, nil) → nil
ifhigh(true, N, cons(M, L)) → high(N, L)
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

QUICKSORT(cons(N, L)) → QUICKSORT(high(N, L))

The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
app(nil, Y) → Y
app(cons(N, L), Y) → cons(N, app(L, Y))
low(N, nil) → nil
low(N, cons(M, L)) → iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) → cons(M, low(N, L))
iflow(false, N, cons(M, L)) → low(N, L)
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
quicksort(nil) → nil
quicksort(cons(N, L)) → app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


QUICKSORT(cons(N, L)) → QUICKSORT(high(N, L))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(cons(x1, x2)) = 4 + (4)x_2   
POL(high(x1, x2)) = 3 + (4)x_2   
POL(ifhigh(x1, x2, x3)) = (4)x_3   
POL(le(x1, x2)) = 0   
POL(true) = 3   
POL(false) = 0   
POL(s(x1)) = 2 + (4)x_1   
POL(QUICKSORT(x1)) = (2)x_1   
POL(0) = 1   
POL(nil) = 0   
The value of delta used in the strict ordering is 2.
The following usable rules [17] were oriented:

high(N, nil) → nil
ifhigh(true, N, cons(M, L)) → high(N, L)
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
app(nil, Y) → Y
app(cons(N, L), Y) → cons(N, app(L, Y))
low(N, nil) → nil
low(N, cons(M, L)) → iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) → cons(M, low(N, L))
iflow(false, N, cons(M, L)) → low(N, L)
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
quicksort(nil) → nil
quicksort(cons(N, L)) → app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.